jueves, 16 de febrero de 2017

Inercia


¿Qué es la inercia?

La inercia (del latín inertĭa) es la propiedad que tienen los cuerpos de permanecer en su estado de reposo relativo o movimiento relativo o dicho de forma general es la resistencia que opone la materia a modificar su estado de movimiento, incluyendo cambios en la velocidad o en la dirección del movimiento. Como consecuencia, un cuerpo conserva su estado de reposo relativo o movimiento rectilíneo uniforme relativo si no hay una fuerza que, actuando sobre él, logre cambiar su estado de movimiento. 

En la naturaleza no existe el reposo, toda la materia está en movimiento, por eso cuando se habla de reposo o Movimiento Rectilíneo Uniforme (MRU) se debe añadir la palabra "relativo" (relativo a un sistema de referencia). El cuerpo está en reposo o en MRU sólo con respecto de ese sistema de referencia. Cuando un cuerpo está en reposo relativo sobre la superficie de la Tierra, en realidad está participando de los distintos movimientos que realiza el planeta y está sometido a diferentes fuerzas como las gravitatorias de la Tierra, el Sol, La Luna y otros cuerpos, así como la resistencia mecánica que impide que se hunda en la tierra, o se deslice. Se puede decir que el cuerpo se encuentra en equilibrio sobre la superficie de la Tierra y por lo tanto en reposo relativo. 

Podríamos decir que es la resistencia que opone un sistema de partículas a modificar su estado dinámico. 

En física se dice que un sistema tiene más inercia cuando resulta más difícil lograr un cambio en el estado físico del mismo. Los dos usos más frecuentes en física son la inercia mecánica y la inercia térmica. 

La primera de ellas aparece en mecánica y es una medida de dificultad para cambiar el estado de movimiento (física)|movimiento]] o reposo de un cuerpo. La inercia mecánica depende de la cantidad de masa y del tensor de inercia. 

La inercia térmica mide la dificultad con la que un cuerpo cambia su temperatura al estar en contacto con otros cuerpos o ser calentado. La inercia térmica depende de la capacidad calorífica. 

Las llamadas fuerzas de inercia son fuerza ficticia| ficticias o aparentes que un observador percibe en un sistema de referencia no-inercial.

















Modelo físico


Modelo Físico






Un modelo físico puede referirse a una construcción teórica (modelo matemático) de un sistema físico. También a un montaje con objetos reales que reproducen el comportamiento de algunos aspectos de un sistema físico o mecánico más complejo a diferente escala (modelo material en miniatura). El término aparece con diferentes acepciones en el ámbito de la física o en el de la física aplicada, como la ingeniería. 

Se dice que una determinada teoría física es un modelo o un modelo físico teórico cuando su dinámica interna (las leyes básicas de evolución temporal que vienen determinadas por el hamiltoniano) no se conocen exactamente. O cuando son conocidas pero, si lo que se busca es estudiar exclusivamente algunos detalles particulares de un sistema complejo, puede resultar rentable (técnicamente) emplear otro tipo de dinámica (ficticia) que hace que el comportamiento en estudio del sistema completo sea aproximadamente igual que el que tendría con la dinámica más complicada. 

Estos modelos se aplican en todas las áreas de la física (meteorología, termodinámica, física nuclear, materiales, etc.) excepto en física teórica. Como cualquier teoría física, un modelo de este tipo, reduciendo el comportamiento observado a hechos fundamentales más básicos, ayuda a explicar y predecir el comportamiento de un sistema físico bajo circunstancias diversas. Sin embargo, al no estar basado en una descripción fundamentalmente correcta, se espera que el modelo falle fuera de su campo de aplicación.
















Véase más en: https://es.wikipedia.org/wiki/Modelo_f%C3%ADsico

Principios y leyes fundamentales de la física


Principios y leyes fundamentales de la física

1. Primera ley de Newton o ley de inercia 


La primera ley de Newton, conocida también como Ley de inercia, nos dice que si sobre un cuerpo no actúa ningún otro, este permanecerá indefinidamente moviéndose en línea recta con velocidad constante (incluido el estado de reposo, que equivale a velocidad cero). 

Ejemplos: 
Si disponemos de una partícula parada al inicio, a no ser que se le empuje (por ejemplo), ésta no se moverá nunca. 
Si a una partícula (por ejemplo un patinador sobre el hielo -modelo de un sistema sin rozamiento-) con velocidad inicial distinta de cero, no se le obliga a frenar con fuerzas de fricción o con un tope, ésta conservará la velocidad que llevaba de forma constante por tiempo infinito. 


2.Segunda ley de Newton o principio fundamental de la dinámica

 

La Primera ley de Newton nos dice que para que un cuerpo altere su movimiento es necesario que exista algo que provoque dicho cambio. Ese algo es lo que conocemos como fuerzas. Estas son el resultado de la acción de unos cuerpos sobre otros. 

La Segunda ley de Newton se encarga de cuantificar el concepto de fuerza. Nos dice que la fuerza neta aplicada sobre un cuerpo es proporcional a la aceleración que adquiere dicho cuerpo. La constante de proporcionalidad es la masa del cuerpo, de manera que podemos expresar la relación de la siguiente manera: 

F = m.a 

Tanto la fuerza como la aceleración son magnitudes vectoriales, es decir, tienen, además de un valor, una dirección y un sentido. De esta manera, la Segunda ley de Newton debe expresarse como: 

F = m.a 

Ejemplo: 

¿Qué fuerza neta se necesita para desacelerar uniformemente a un automóvil de 1500 Kg. de masa desde una velocidad de 100 Km. /h. hasta el reposo, en una distancia de 55 m?


Usamos F = m.a primero debemos calcular la aceleración a. Suponemos que el movimiento es a lo largo del eje +x. La velocidad inicial es v0 = 100 Km. /h = 28m/s, la velocidad final v0 = 0, y la distancia recorrida x = 55 m. 

De la ecuación cinemática v2 = v02 + 2ax, despejamos a: 

a = (v2 - v02)/2x = [0 - (28m/s)2]/ (2x55m) = - 7.1 m/s2. 

Luego, la fuerza neta necesaria es entonces 

F = ma = (1500 Kg.) (-7.1m/s2) - 1.1x104 N, que obra en sentido -x 

3. Tercera ley de Newton o principio de acción-reacción 


La tercera ley, también conocida como Principio de acción y reacción nos dice que si un cuerpo A ejerce una acción sobre otro cuerpo B, éste realiza sobre A otra acción igual y de sentido contrario. 

Esto es algo que podemos comprobar a diario en numerosas ocasiones. Por ejemplo, cuando queremos dar un salto hacia arriba, empujamos el suelo para impulsarnos. La reacción del suelo es la que nos hace saltar hacia arriba. 

Cuando estamos en una piscina y empujamos a alguien, nosotros también nos movemos en sentido contrario. Esto se debe a la reacción que la otra persona hace sobre nosotros, aunque no haga el intento de empujarnos a nosotros. 

Hay que destacar que, aunque los pares de acción y reacción tenga el mismo valor y sentidos contrarios, no se anulan entre si, puesto que actúan sobre cuerpos distintos. 

Ejemplos: 
Cuando se dispara un arma de fuego, la fuerza del gas producido debido a la quema de la pólvora, hace que la bala salga. De acuerdo a la ley de Newton, el arma en sí retrocede. 
La punta de una gran manguera contra incendios tiene asa, la cual los bomberos deben sostener con firmeza, debido a que al salir el chorro de agua, la manguera es enviada en sentido contrario de manera visiblemente. 
Los rociadores rotativos de un jardín trabajan con el mismo principio. De manera similar, el movimiento hacia adelante de un cohete viene de la reacción del rápido chorro de gases calientes que salen de su parte trasera. 

4. Ley del trabajo: 


En mecánica, el trabajo efectuado por una fuerza aplicada sobre una partícula durante un cierto desplazamiento se define como la integral del producto escalar del vector fuerza por el vector desplazamiento. El trabajo es una magnitud física escalar, y se representa con la letra (del inglés Work) para distinguirlo de la magnitud temperatura, normalmente representada con la letra
                                                   


Se denomina trabajo infinitesimal, al producto escalar del vector fuerza por el vector desplazamiento. 



Ejemplos: 

Calcular el trabajo de una fuerza constante de 12 N, cuyo punto de aplicación se traslada 7 m, si el ángulo entre las direcciones de la fuerza y del desplazamiento son 0º, 60º, 90º, 135º, 180º. 




  • Si la fuerza y el desplazamiento tienen el mismo sentido, el trabajo es positivo 
  • Si la fuerza y el desplazamiento tienen sentidos contrarios, el trabajo es negativo 
  • Si la fuerza es perpendicular al desplazamiento, el trabajo es nulo












Electromagnetismo


Electromagnetismo

El electromagnetismo es una rama de la física que estudia y unifica los fenómenos eléctricos y magnéticos en una sola teoría, cuyos fundamentos fueron presentados por Michael Faraday y formulados por primera vez de modo completo por James Clerk Maxwell. La formulación consiste en cuatro ecuaciones diferenciales vectoriales que relacionan el campo eléctrico, el campo magnético y sus respectivas fuentes materiales (corriente eléctrica, polarización eléctrica y polarización magnética), conocidas como ecuaciones de Maxwell. 

El electromagnetismo es una teoría de campos; es decir, las explicaciones y predicciones que provee se basan en magnitudes físicas vectoriales o tensoriales dependientes de la posición en el espacio y del tiempo. El electromagnetismo describe los fenómenos físicos macroscópicos en los cuales intervienen cargas eléctricas en reposo y en movimiento, usando para ello campos eléctricos y magnéticos y sus efectos sobre las sustancias sólidas, líquidas y gaseosas. Por ser una teoría macroscópica, es decir, aplicable solo a un número muy grande de partículas y a distancias grandes respecto de las dimensiones de estas, el electromagnetismo no describe los fenómenos atómicos y moleculares, para los que es necesario usar la mecánica cuántica. 

El electromagnetismo es considerado como una de las cuatro fuerzas fundamentales del universo actualmente conocido.

















Estadística

Estadística





La estadística es una ciencia formal y una herramienta que estudia usos y análisis provenientes de una muestra representativa de datos, busca explicar las correlaciones y dependencias de un fenómeno físico o natural, de ocurrencia en forma aleatoria o condicional. 

Es transversal a una amplia variedad de disciplinas, desde la física hasta las ciencias sociales, desde las ciencias de la salud hasta el control de calidad. Además, se usa en áreas de negocios o instituciones gubernamentales ya que su 

principal objetivo es describir al conjunto de datos obtenidos para la toma de decisiones o bien, para realizar generalizaciones sobre las características observadas. 

Hoy en día, la estadística es una ciencia que se encarga de estudiar una determinada población por medio de la recolección, recopilación e interpretación de datos. Del mismo modo, también es considerada una técnica especial apta para el estudio cuantitativo de los fenómenos de masa o colectivo. 

La estadística se divide en dos grandes áreas: 
  • Estadística descriptiva: Se dedica a la descripción, visualización y resumen de datos originados a partir de los fenómenos de estudio 
  • Estadística inferencial: Se dedica a la generación de los modelos, inferencias y predicciones asociadas a los fenómenos en cuestión teniendo en cuenta la aleatoriedad de las observaciones.

Importancia de la estadística:


La estadística es de gran importancia en la investigación científica debido a que:
  • Permite una descripción más exacta. 
  • Nos obliga a ser claros y exactos en nuestros procedimientos y en nuestro pensar. 
  • Permite resumir los resultados de manera significativa y cómoda. 
  • Nos permite deducir conclusiones generales.










Media aritmética

Media aritmética

En matemáticas y estadística, la media aritmética (también llamada promedio o simplemente media) de un conjunto finito de números es el valor característico de una serie de datos cuantitativos, objeto de estudio que parte del principio de la esperanza matemática o valor esperado, se obtiene a partir de la suma de todos sus valores dividida entre el número de sumandos. Cuando el conjunto es una muestra aleatoria recibe el nombre de media muestral siendo uno de los principales estadísticos muestrales. 


  • La suma de las desviaciones con respecto a la media aritmética es cero (0). 
  • La media aritmética de los cuadrados de las desviaciones de los valores de la variable con respecto a una constante cualquiera se hace mínima cuando dicha constante coincide con la media aritmética. 
  • Si a todos los valores de la variable se le suma una misma cantidad, la media aritmética queda aumentada en dicha cantidad. 
  • Si todos los valores de la variable se multiplican por una misma constante la media aritmética queda multiplicada por dicha constante.





















Investigación científica



¿Qué es investigación científica?

Es un proceso que, mediante la aplicación del método científico de investigación, procura obtener información relevante y fidedigna (digna de fe y crédito), para entender, verificar, corregir o aplicar el conocimiento.

Para obtener algún resultado de manera clara y precisa es necesario aplicar algún tipo de investigación, la cuál está muy ligada a los seres humanos, ésta posee una serie de pasos para lograr el objetivo planteado o para llegar a la información solicitada, tiene como base el método científico y este es el método de estudio sistemático de la naturaleza que incluye las técnicas de observación, reglas para el razonamiento y la predicción, ideas sobre la experimentación planificada y los modos de comunicar los resultados experimentales y teóricos.







Además, la investigación posee una serie de características que ayudan al investigador a regirse de manera eficaz en la misma, es tan compacta que posee formas, elementos, procesos, diferentes tipos, entre otros. Es fundamental para el estudiante y para el profesional, esta forma parte del camino profesional antes, durante y después de lograr la profesión; ella nos acompaña desde el principio de los estudios y la vida misma. Para todo tipo de investigación hay un proceso y unos objetivos precisos.